-
Derece türü: "Büyük Veri Mühendisi" Sertifikası
-
Ek nitelikler: Veri Mühendisi" sertifikası
"Büyük Veri Uzmanı" Sertifikası -
Final Sınavı: Final sunumları ile uygulamalı proje çalışması
-
Ders saatleri: Tam zamanlıPazartesi'den Cuma'ya 8:30 - 15:35 (resmi tatil olan haftalarda 8:30 - 17:10)
-
Eğitim dili: Alman
-
Süre: 8 Haftalar
Veri Mühendisi
İş Zekasının Temelleri (yaklaşık 2 gün)
Uygulama alanları, iş zekası mimarisinin boyutları
İş zekasının temelleri, OLAP, OLTP, veri mühendislerinin görevleri
Veri Ambarı (DWH): yapılandırılmış, yarı yapılandırılmış ve yapılandırılmamış verilerin ele alınması ve işlenmesi
Gereksinim yönetimi (yaklaşık 2 gün)
Gereksinim analizinde görevler, hedefler ve prosedürler
Veri modelleme, ERM ile giriş/modelleme
UML'de giriş/modelleme
- Sınıf diyagramları
- Kullanım durumu analizi
- Faaliyet diyagramları
İş sürecinde yapay zeka (AI)
Belirli yapay zeka teknolojilerinin sunumu
ve profesyonel ortamdaki olası uygulamalar
Veritabanları (yaklaşık 3 gün)
Veritabanı sistemlerinin temelleri
Veritabanı yönetim sistemlerinin mimarisi
RDBMS Uygulaması
RDBMS'de veri modelinin uygulanması, normal formlar
SQL'e pratik ve teorik giriş
İlişkisel veritabanlarının sınırları, csv, json
Veri Ambarı (yaklaşık 4 gün)
Yıldız Şeması
Veri modelleme
RDBMS'de Yıldız Şemasının Oluşturulması
Snowflake Schema, temel bilgiler, veri modelleme
RDBMS'de Kar Tanesi Şemasının Oluşturulması
Galaxy Schema: Temel bilgiler, veri modelleme
Tip 1'den 5'e Yavaşça Değişen Boyut Tabloları - Yeniden Düzenleme, İstifleme, Yeniden Düzenleme, Mini Boyut ve Tip 5
Normal, nedensel, mini ve canavar, heterojen ve alt boyutlara giriş
Durum ve işlem odaklı karşılaştırması
DWH gerçek tabloları, yoğunluk ve depolama
ETL (yaklaşık 4 gün)
Veri Temizleme
- Boş Değerler
- Verilerin hazırlanması
- Verilerin uyumlaştırılması
- Düzenli ifadelerin uygulanması
Veri Anlama
- Veri doğrulama
- İstatistiksel veri analizi
Veri koruma, veri güvenliği
ETL rotalarının pratik yapısı
Data Vault 2.0, temeller, merkezler, bağlantılar, uydular, hash anahtarı, hash diff.
Data Vault veri modellemesi
Bir Veri Kasası modelinin pratik yapısı - Ham Kasa, hash prosedürlerinin pratik uygulaması
Proje çalışması (yaklaşık 5 gün)
Öğrenilen içeriği pekiştirmek için
Proje sonuçlarının sunumu
Büyük Veri Uzmanı
Büyük Veri Nedir? (yaklaşık 1 gün)
Hacim, Hız, Çeşitlilik, Değer, Doğruluk
Büyük miktarda verinin fırsatları ve riskleri
Farklılaşma: iş zekası, veri analitiği, veri bilimi
Veri madenciliği nedir?
Apache Çerçevelerine Giriş (yaklaşık 2 gün)
Bulutta büyük veri çözümleri
Veri erişim modelleri
Veri depolama
MapReduce (yaklaşık 3 gün)
MapReduce felsefesi
Hadoop Kümesi
MapReduce işlerinin zincirlenmesi
İş sürecinde yapay zeka (AI)
Belirli yapay zeka teknolojilerinin sunumu
ve profesyonel ortamdaki olası uygulamalar
Bileşenler (yaklaşık 3 gün)
Çeşitli araçların kısa sunumu
Veri aktarımı
YARN uygulamaları
Hadoop JAVA API
Apache Spark
NoSQL ve HBase (yaklaşık 3 gün)
CAP teoremi
ASİT ve BAZ
Veritabanı türleri
HBase
Büyük Veri Görselleştirme (yaklaşık 3 gün)
Görselleştirme teorileri
Diyagram seçimi
Yeni tip diyagramlar
Veri görselleştirme araçları
Proje çalışması (yaklaşık 5 gün)
Öğrenilen içeriği pekiştirmek için
Proje sonuçlarının sunumu
Değişiklikler mümkündür. Kurs içeriği düzenli olarak güncellenmektedir.
Verilerin harmanlanması, hazırlanması, zenginleştirilmesi ve iletilmesiyle ilgili süreçlerde yetkinsiniz. Ayrıca sektöre özgü yazılımların yardımıyla büyük, yapılandırılmamış veri miktarlarını işleyebilirsiniz. Apache çerçevesi hakkında bilgi sahibisiniz ve verileri çekici bir şekilde nasıl görselleştireceğinizi biliyorsunuz.
Kurs, bilgisayar bilimleri, işletme enformatiği, işletme, matematik veya benzer bir yeterlilik derecesine sahip kişilere yöneliktir.
Büyük veri, şirketlerde geliştirme ve operasyon ekipleriyle işbirliği içinde BT çözümlerinin disiplinler arası analizi ve tasarımı için kullanılmaktadır. Büyük Veri Mühendisleri sanayi, ticaret, hizmet ve finans sektörlerindeki hem büyük hem de orta ölçekli şirketlerden talep görmektedir.
Anlamlı sertifikanız, edindiğiniz nitelikler hakkında ayrıntılı bir fikir verir ve kariyer beklentilerinizi geliştirir.
Didaktik kavram
Eğitmenleriniz hem profesyonel hem de didaktik açıdan son derece kalifiyedir ve size ilk günden son güne kadar ders verecektir (kendi kendine çalışma sistemi yoktur).
Etkili küçük gruplar halinde öğreneceksiniz. Kurslar genellikle 6 ila 25 katılımcıdan oluşmaktadır. Genel dersler, tüm kurs modüllerinde çok sayıda pratik alıştırma ile desteklenmektedir. Uygulama aşaması kursun önemli bir parçasıdır, çünkü bu süre zarfında öğrendiklerinizi işler ve uygulamada güven ve rutin kazanırsınız. Kursun son bölümü bir proje, bir vaka çalışması veya bir final sınavını içerir.
Sanal sınıf alfaview®
BildungszentrumDersler, modern alfaview® video teknolojisi kullanılarak kendi evinizin rahatlığında ya da 'deki tesislerimizde gerçekleştirilir. Tüm kursiyerler alfaview® aracılığıyla birbirlerini yüz yüze görebilir, birbirleriyle dudak senkronize ses kalitesinde iletişim kurabilir ve ortak projeler üzerinde çalışabilir. Elbette, bağlı eğitmenlerinizi de istediğiniz zaman canlı olarak görebilir ve onlarla konuşabilirsiniz ve kursun tüm süresi boyunca eğitmenleriniz tarafından gerçek zamanlı olarak eğitileceksiniz. Dersler e-öğrenme değil, video teknolojisi aracılığıyla gerçek canlı yüz yüze öğretimdir.
alfatraining Agentur für Arbeit Eğitim kursları, AZAV onay yönetmeliğine uygun olarak sübvanse edilmekte ve sertifikalandırılmaktadır. Bildungsgutschein Aktivierungs- und VermittlungsgutscheinKurs başvurusunda bulunduğunuzda, kurs masraflarının tamamı genellikle finansman kuruluşunuz tarafından karşılanır.
Europäischen Sozialfonds Deutsche Rentenversicherung (ESF), (DRV) veya bölgesel finansman programları aracılığıyla da finansman mümkündür. Berufsförderungsdienst Düzenli bir asker olarak, (BFD) aracılığıyla daha fazla eğitim kursuna katılmak mümkündür. Agentur für Arbeit (Qualifizierungschancengesetz) Şirketler de çalışanlarını (BFD) tarafından sağlanan bir finansman programı aracılığıyla kalifiye hale getirebilirler.