BT Hizmet Yönetiminde ITIL® 4 Temel ve Proje Yönetiminde PRINCE2® 7 Temel ile Veri Bilimcisi

Sizin için ücretsiz

tanıtım yoluyla

Veri bilimciler, şirketlere büyük miktarda veriyi işleme ve bu verilere dayanarak mevcut süreçleri optimize etme konusunda destek olmak için istihdam edilmektedir. Ham verileri yapılandırılmış verilere dönüştürür, analiz eder ve böylece şirketler için karar verme için bir temel sağlarlar. Ayrıca PRINCE2® proje yönetimi yöntemini ve ITIL® süreç optimizasyonu yöntemini de öğreneceksiniz.
  • Derece türü: "Veri Bilimcisi" Sertifikası
    "ITIL® 4 Foundation in IT Service Management" Sertifikası
    "PRINCE2® 7 Foundation in Project Management" Sertifikası
  • Ek nitelikler: Veri Mühendisi" sertifikası
    Veri Analitiği" sertifikası
    Makine Öğrenimi" sertifikası
    Derin Öğrenme" sertifikası
  • Final Sınavı: Final sunumları ile uygulamalı proje çalışması
    ITIL® 4 BT Hizmet Yönetiminde Temel
    PRINCE2® 7 Proje Yönetiminde Temel
  • Ders saatleri: Tam zamanlı
    Pazartesi'den Cuma'ya 8:30 - 15:35 (resmi tatil olan haftalarda 8:30 - 17:10)
  • Eğitim dili: Alman
  • Süre: 20 Haftalar

Veri Mühendisi

İş Zekasının Temelleri (yaklaşık 2 gün)

Uygulama alanları, iş zekası mimarisinin boyutları

İş zekasının temelleri, OLAP, OLTP, veri mühendislerinin görevleri

Veri Ambarı (DWH): yapılandırılmış, yarı yapılandırılmış ve yapılandırılmamış verilerin ele alınması ve işlenmesi


Gereksinim yönetimi (yaklaşık 2 gün)

Gereksinim analizinde görevler, hedefler ve prosedürler

Veri modelleme, ERM ile giriş/modelleme

UML'de giriş/modelleme

- Sınıf diyagramları

- Kullanım durumu analizi

- Faaliyet diyagramları


İş sürecinde yapay zeka (AI)

Belirli yapay zeka teknolojilerinin sunumu

ve profesyonel ortamdaki olası uygulamalar


Veritabanları (yaklaşık 3 gün)

Veritabanı sistemlerinin temelleri

Veritabanı yönetim sistemlerinin mimarisi

RDBMS Uygulaması

RDBMS'de veri modelinin uygulanması, normal formlar

SQL'e pratik ve teorik giriş

İlişkisel veritabanlarının sınırları, csv, json


Veri Ambarı (yaklaşık 4 gün)

Yıldız Şeması

Veri modelleme

RDBMS'de Yıldız Şemasının Oluşturulması

Snowflake Schema, temel bilgiler, veri modelleme

RDBMS'de Kar Tanesi Şemasının Oluşturulması

Galaxy Schema: Temel bilgiler, veri modelleme

Tip 1'den 5'e Yavaşça Değişen Boyut Tabloları - Yeniden Düzenleme, İstifleme, Yeniden Düzenleme, Mini Boyut ve Tip 5

Normal, nedensel, mini ve canavar, heterojen ve alt boyutlara giriş

Durum ve işlem odaklı karşılaştırması

DWH gerçek tabloları, yoğunluk ve depolama


ETL (yaklaşık 4 gün)

Veri Temizleme

- Boş Değerler

- Verilerin hazırlanması

- Verilerin uyumlaştırılması

- Düzenli ifadelerin uygulanması

Veri Anlama

- Veri doğrulama

- İstatistiksel veri analizi

Veri koruma, veri güvenliği

ETL rotalarının pratik yapısı

Data Vault 2.0, temeller, merkezler, bağlantılar, uydular, hash anahtarı, hash diff.

Data Vault veri modellemesi

Bir Veri Kasası modelinin pratik yapısı - Ham Kasa, hash prosedürlerinin pratik uygulaması


Proje çalışması (yaklaşık 5 gün)

Öğrenilen içeriği pekiştirmek için

Proje sonuçlarının sunumu

Veri analitiği

Veri analizine giriş (yaklaşık 1 gün)

CRISP-DM referans modeli

Veri analitiği iş akışları

Yapay zeka, makine öğrenimi, derin öğrenmenin tanımı

Veri mühendisleri, veri bilimcileri ve veri analistleri şirketindeki gereksinimler ve rol


Python temellerinin gözden geçirilmesi (yaklaşık 1 gün)

veri türleri

Fonksiyonlar


Veri analizi (yaklaşık 3 gün)

Veri analitiği bağlamında merkezi Python modülleri (NumPy, Pandas)

Veri hazırlama süreci

Python'da veri madenciliği algoritmaları


İş sürecinde yapay zeka (AI)

Belirli yapay zeka teknolojilerinin sunumu

ve profesyonel ortamdaki olası uygulamalar


Veri görselleştirme (yaklaşık 3 gün)

Keşifsel veri analizi

içgörüler

Veri kalitesi

Fayda analizi

Python ile Görselleştirme: Matplotlib, Seaborn, Plotly Express

Veri hikayesi anlatımı


Veri yönetimi (yaklaşık 2 gün)

Büyük veri mimarileri

SQL ile ilişkisel veritabanları

SQL ve NoSQL veritabanlarının karşılaştırılması

İş Zekası

Veri analizi bağlamında veri koruma


Büyük veri bağlamında veri analizi (yaklaşık 1 gün)

MapReduce yaklaşımı

Kıvılcım

NoSQL


Gösterge Tabloları (yaklaşık 3 gün)

Kütüphane: Dash

Gösterge tablolarının yapısı - Gösterge bileşenleri

Gösterge tablolarını özelleştirme

Geri aramalar


Metin Madenciliği (yaklaşık 1 gün)

Veri ön işleme

Görselleştirme

Kütüphane: SpaCy


Proje çalışması (yaklaşık 5 gün)

Öğrenilen içeriği pekiştirmek için

Proje sonuçlarının sunumu

Makine Öğrenimi

Makine Öğrenimine Giriş (yaklaşık 5 gün)

Neden makine öğrenimi?

Uygulama örnekleri

Denetimli öğrenme, denetimsiz öğrenme, kısmi denetimli öğrenme, pekiştirmeli öğrenme

Veri seti örnekleri

Verileri tanıma

Eğitim, doğrulama ve test verileri

Veri görüntüleme

Tahminlerde bulunmak


Gözetimli öğrenme (yaklaşık 5 gün)

Sınıflandırma ve regresyon

Genelleme, aşırı uyum ve yetersiz uyum

Veri setinin boyutu

Denetimli öğrenme için algoritmalar

Doğrusal modeller

Bayes sınıflandırıcıları

Karar ağaçları

Rastgele Orman

Gradyan Güçlendirme

k-en yakın komşular

Destek Vektör Makineleri

Koşullu Rastgele Alan

Sinir Ağları ve Derin Öğrenme

Olasılıklar


Denetimsiz öğrenme (yaklaşık 5 gün)

Denetimsiz öğrenme türleri

Ön işleme ve ölçeklendirme

Veri dönüşümleri

Eğitim ve test verilerinin ölçeklendirilmesi

Boyut küçültme

Özellik mühendisliği

Manifold öğrenme

Temel bileşen ayrıştırması (PCA)

Negatif olmayan matris faktörizasyonu (NMF)

t-SNE ile Manifold öğrenme

Küme analizi

k-Means kümeleme

Aglomeratif kümeleme

Hiyerarşik küme analizi

DBSCAN

Küme algoritmaları


Değerlendirme ve iyileştirme (yaklaşık 2 gün)

Model seçimi ve model değerlendirmesi

Bir tahmin edicinin hiperparametrelerinin ayarlanması

Çapraz Doğrulama

Izgara arama

Değerlendirme metrikleri

Sınıflandırma


Proje çalışması (yaklaşık 3 gün)

Öğrenilen içeriği pekiştirmek için

Proje sonuçlarının sunumu

Derin öğrenme

Derin Öğrenmeye Giriş (yaklaşık 1 gün)

Bir makine öğrenimi türü olarak derin öğrenme


Sinir ağlarının temelleri (yaklaşık 4 gün)

Perceptron

Sinir ağlarının hesaplanması

Model parametrelerinin optimizasyonu, geriye yayılım

Derin öğrenme kütüphaneleri

Regresyon vs. sınıflandırma

Öğrenme eğrileri, aşırı uyum ve düzenlileştirme

Hiperparametre optimizasyonu

Stokastik gradyan inişi (SGD)

Momentum, Adam Optimiser

Öğrenme oranı


Evrişimsel Sinir Ağı (CNN) (yaklaşık 2 gün)

Görüntü sınıflandırma

Konvolüsyonel katmanlar, havuzlama katmanları

Katmanları yeniden şekillendirme, düzleştirme, küresel ortalama havuzlama

CNN mimarileri ImageNet-Competition

Derin sinir ağları, kaybolan gradyanlar, atlama bağlantıları, toplu normalizasyon


Transfer Öğrenimi (yaklaşık 1 gün)

Modellerin uyarlanması

Denetimsiz ön eğitim

Görüntü verisi artırımı, açıklanabilir yapay zeka


Bölgesel CNN (yaklaşık 1 gün)

Nesne lokalizasyonu

Regresyon sorunları

Dallanmış sinir ağları


Yaratıcı imaj oluşturma yöntemleri (yaklaşık 1 gün)

Üretken Çekişmeli Ağlar (GAN)

Deepfakes

Difüzyon modelleri


Tekrarlayan sinir ağları (yaklaşık 2 gün)

Dizi analizi

Tekrarlayan katmanlar

Zaman içinde geri yayılım (BPTT)

Zaman serilerinin analizi

Patlayan ve kaybolan gradyan problemleri

LSTM (Uzun Kısa Süreli Bellek)

GRU (Gated Recurrent Unit)

Derin RNN

Derin LSTM


Sinir ağları kullanarak metin işleme (yaklaşık 2 gün)

Metin ön işleme

Katmanları gömme

Metin sınıflandırması

Duygu analizi

NLP'de transfer öğrenme

Çeviriler

Diziden diziye yöntemi, kodlayıcı-kod çözücü mimarisi


Dil modelleri (yaklaşık 1 gün)

BERT, GPT

Dikkat katmanlar, transformatörler

Metin üretim hatları

Özetleme

sohbet robotları


Derin pekiştirmeli öğrenme (yaklaşık 1 gün)

Dinamik sistemlerin kontrolü

Temsilci sistemleri

Ödüller aracılığıyla eğitim

Politika eğimleri

Derin Q-öğrenme


Bayesian sinir ağları (yaklaşık 1 gün)

Sinir ağlarındaki belirsizlikler

Tahminlerin istatistiksel değerlendirmesi

Güven, standart sapma

Dengesiz veri

Örnekleme yöntemleri


Proje çalışması (yaklaşık 3 gün)

Öğrenilen içeriği pekiştirmek için

Proje sonuçlarının sunumu

ITIL® 4 BT Hizmet Yönetiminde Temel

BT hizmet yönetiminin temel kavramlarının anlaşılması (yaklaşık 2 gün)

Hizmet kavramına giriş

ITIL® yeterlilik programı

BT hizmet yönetiminde önemli terimlerin tanımı ITSM

Hizmetler aracılığıyla değer yaratmaya ilişkin temel kavramlar

İlişki yönetiminin temel kavramları


ITIL®'in temel kavramsal yapı taşları (yaklaşık 2 gün)

ITIL® Kılavuz İlkeleri

Kılavuz ilkelerin türü, kullanımı ve etkileşimi

Hizmet yönetiminin dört boyutu

ITIL® Hizmet Değer Sistemleri (SVS) ve bileşenleri

Hizmet Değer Zinciri, faaliyetleri ve bunların etkileşimi


İş sürecinde yapay zeka (AI)

Belirli yapay zeka teknolojilerinin sunumu

ve profesyonel ortamdaki olası uygulamalar


ITIL® Uygulamaları (yaklaşık 3 gün)

En önemli yedi ITIL® Uygulaması

Diğer sekiz ITIL® Uygulamasının amacı


Proje çalışması, sertifikasyon hazırlığı ve sertifikasyon sınavı (yaklaşık 3 gün)

ITIL®, AXELOS Limited'in tescilli ticari markasıdır ve AXELOS Limited'in izni ile kullanılmaktadır. Tüm hakları saklıdır.

PRINCE2® 7 Proje Yönetiminde Temel

PRINCE2® temelli proje yönetimine giriş (yaklaşık 1 gün)

Bir projenin tanımı ve özellikleri

Proje yönetiminin proje kontrol döngüsü ve altı proje boyutu

Proje yönetimindeki zorluklar - projeler neden başarısız olur?

PRINCE2® proje yönetimi yönteminin avantajları

Müşteri-tedarikçi ortamları

Ticari bir ortamdaki projeler

PRINCE2® yönteminin yapısı ve beş entegre yapı taşı


PRINCE2® temel ilkeleri (yaklaşık 1 gün)

PRINCE2®'nin yedi temel ilkesi

Temel ilkelerin açıklamaları ve içerikleri

Temel ilkeler ve PRINCE2® konuları arasındaki ilişki

PRINCE2®'nin proje ortamına uyarlanması


İş sürecinde yapay zeka (AI)

Belirli yapay zeka teknolojilerinin sunumu

ve profesyonel ortamdaki olası uygulamalar


PRINCE2® projeleri için insanların önemi (yaklaşık 1 gün)

Değişim yönetimi

Liderlik ve yönetim

Projede iletişim


PRINCE2®'nin yedi konusu (yaklaşık 3 gün)

İş vakası (fayda yönetimi yaklaşımı ve sürdürülebilirlik yönetimi yaklaşımı)

Organizasyon (proje yapısı, roller ve sorumluluklar)

Planların oluşturulması

Kalite planlama ve kalite kontrol

Risk yönetimi

Sorun yönetimi

Projenin ilerleyişinin kontrol edilmesi


Yedi PRINCE2® süreci (yaklaşık 2 gün)

Yedi PRINCE2® sürecinin proje sürecindeki etkileşimi

İlgili PRINCE2® süreçlerindeki faaliyetler

Bir projenin hazırlanması, yönlendirilmesi ve başlatılması

Bir fazın kontrol edilmesi

Ürün teslimatının yönetilmesi

Faz geçişlerinin yönetilmesi

Bir projeyi kapatma


Proje çalışması, sertifikasyon hazırlığı ve sertifikasyon sınavı (yaklaşık 2 gün)

PRINCE2® AXELOS Limited'in tescilli ticari markasıdır ve AXELOS Limited'in izni ile kullanılmaktadır. Tüm hakları saklıdır.



Değişiklikler mümkündür. Kurs içeriği düzenli olarak güncellenmektedir.

Python'da programlama becerileri ve veritabanları (SQL) ile deneyim gereklidir.

Verilerin harmanlanması, hazırlanması, zenginleştirilmesi ve aktarılmasının yanı sıra makine öğreniminin uygulanmasına ilişkin süreçlere aşinasınız. Ayrıca derin öğrenmenin uygulama alanlarına ve sinir ağlarının işleyişine de aşinasınız.

Ayrıca, şirketlerin süreç ve hizmet kalitesini değerlendirmek ve optimize etmek için önemli uzmanlık bilgisine sahipsiniz ve BT Altyapı Kütüphanesi (ITIL®) terim ve kavramlarına da aşinasınız. Ayrıca PRINCE2® projeleri üzerinde çalışabilecek ve bu projelerin süreçlerine ve terminolojisine aşina olacaksınız. Ayrıca BT projelerini planlayıp uygulayabilecek ve başarılarını ölçebileceksiniz.

Kurs, bilgisayar bilimleri, işletme enformatiği, işletme, matematik veya benzer bir yeterlilik derecesine sahip kişilere yöneliktir.

Veri bilimciler, lojistik, çevrimiçi perakende ve pazarlama, enerji endüstrisi ve ayrıca sağlık sektörü gibi büyük miktarda verinin analizi ve modellenmesine dayalı olarak iş süreçlerini optimize etmek isteyen şirketlerde kullanılmaktadır.

ITIL® ve PRINCE2® ile BT hizmet ve proje yönetimi bilgisiyle, özellikle BT sektöründe yüksek talep gören ek bir yeterliliğe sahip olursunuz.

Didaktik kavram

Eğitmenleriniz hem profesyonel hem de didaktik açıdan son derece kalifiyedir ve size ilk günden son güne kadar ders verecektir (kendi kendine çalışma sistemi yoktur).

Etkili küçük gruplar halinde öğreneceksiniz. Kurslar genellikle 6 ila 25 katılımcıdan oluşmaktadır. Genel dersler, tüm kurs modüllerinde çok sayıda pratik alıştırma ile desteklenmektedir. Uygulama aşaması kursun önemli bir parçasıdır, çünkü bu süre zarfında öğrendiklerinizi işler ve uygulamada güven ve rutin kazanırsınız. Kursun son bölümü bir proje, bir vaka çalışması veya bir final sınavını içerir.

 

Sanal sınıf alfaview®

BildungszentrumDersler, modern alfaview® video teknolojisi kullanılarak kendi evinizin rahatlığında ya da 'deki tesislerimizde gerçekleştirilir. Tüm kursiyerler alfaview® aracılığıyla birbirlerini yüz yüze görebilir, birbirleriyle dudak senkronize ses kalitesinde iletişim kurabilir ve ortak projeler üzerinde çalışabilir. Elbette, bağlı eğitmenlerinizi de istediğiniz zaman canlı olarak görebilir ve onlarla konuşabilirsiniz ve kursun tüm süresi boyunca eğitmenleriniz tarafından gerçek zamanlı olarak eğitileceksiniz. Dersler e-öğrenme değil, video teknolojisi aracılığıyla gerçek canlı yüz yüze öğretimdir.

 

alfatraining Agentur für Arbeit Eğitim kursları, AZAV onay yönetmeliğine uygun olarak sübvanse edilmekte ve sertifikalandırılmaktadır. Bildungsgutschein Aktivierungs- und VermittlungsgutscheinKurs başvurusunda bulunduğunuzda, kurs masraflarının tamamı genellikle finansman kuruluşunuz tarafından karşılanır.
Europäischen Sozialfonds Deutsche Rentenversicherung (ESF), (DRV) veya bölgesel finansman programları aracılığıyla da finansman mümkündür. Berufsförderungsdienst Düzenli bir asker olarak, (BFD) aracılığıyla daha fazla eğitim kursuna katılmak mümkündür. Agentur für Arbeit (Qualifizierungschancengesetz) Şirketler de çalışanlarını (BFD) tarafından sağlanan bir finansman programı aracılığıyla kalifiye hale getirebilirler.

Size ücretsiz tavsiyede bulunmaktan memnuniyet duyarız. 0800 3456-500 Pzt - Cuma günleri sabah 8'den akşam 5'e kadar
tüm Alman şebekelerinden ücretsiz.
Bize ulaşın
Size ücretsiz tavsiyede bulunmaktan memnuniyet duyarız. 0800 3456-500 Pzt - Cuma günleri sabah 8'den akşam 5'e kadar tüm Alman şebekelerinden ücretsiz.