İstatistik ile makine öğrenimi

Sizin için ücretsiz

tanıtım yoluyla

Araştırma ve kalite güvence alanındaki ampirik çalışmalar, korelasyonları tanımayı, gözlemleri doğrulamayı ve ölçüm verilerini doğru bir şekilde sınıflandırmayı mümkün kılar. Makine öğreniminde yapay bilgi deneyimlerden üretilir - yapay zekanın (AI) bir alt alanıdır.
  • Derece türü: Makine Öğrenimi" sertifikası
  • Ek nitelikler: İstatistikler" sertifikası
  • Final Sınavı: Final sunumları ile uygulamalı proje çalışması
  • Ders saatleri: Tam zamanlı
    Pazartesi'den Cuma'ya 8:30 - 15:35 (resmi tatil olan haftalarda 8:30 - 17:10)
  • Eğitim dili: Alman
  • Süre: 8 Haftalar

İstatistikler

İstatistiksel temeller (yaklaşık 6 gün)

Ölçme teorisinin temelleri (evren ve örneklem, örneklem türleri, ölçme ve ölçek düzeyleri)

Tek değişkenli tanımlayıcı istatistikler (frekans dağılımları, merkezi ölçümler, dağılım ölçümleri, standart değer, histogramlar, çubuk grafikler, pasta grafikler, çizgi grafikler ve kutu grafikler)

İki değişkenli tanımlayıcı istatistikler (korelasyon ölçümleri, korelasyon katsayıları, çapraz tablolar, dağılım grafikleri ve gruplandırılmış çubuk grafikler)

Tümevarımsal çıkarımsal istatistiğin temelleri (olasılık dağılımı, normal dağılım, ortalama değer dağılımı, anlamlılık testi, Fisher'in boş hipotez testi, etki büyüklüğü, parametre tahmini, güven aralıkları, hata çubuğu grafikleri, güç analizleri ve optimum örneklem büyüklüğünün belirlenmesi)


İş sürecinde yapay zeka (AI)

Belirli yapay zeka teknolojilerinin sunumu

ve profesyonel ortamdaki olası uygulamalar


İki grubu karşılaştırma yöntemleri (yaklaşık 5 gün)

Bir örneklem için z- ve t-testi (belirli bir değerden sapma)

İki bağımsız/bağlantılı örneklem arasındaki ortalama fark için t-testi

Eylemlerin, önlemlerin, müdahalelerin ve diğer değişikliklerin etkinliğinin t-testleri ile test edilmesi (iki gruplu ön test-son test tasarımları)

Anlamlılık testlerinin desteklenmesi (Anderson-Darling testi, Ryan-Joiner testi, Levene testi, Bonnet testi, korelasyonlar için anlamlılık testi)

Parametrik olmayan yöntemler (Wilcoxon testi, işaret testi, Mann-Whitney testi)

Olumsallık analizleri (binom testi, Fisher'in kesin testi, ki-kare testi, ilişki ölçümleri ile çapraz tablolar)


Çeşitli grupların ortalamalarını karşılaştırma yöntemleri (yaklaşık 5 gün)

Tek ve iki faktörlü varyans analizi (basit ve dengeli ANOVA)

Çok faktörlü varyans analizi (genel doğrusal model)

Sabit, rastgele, çaprazlanmış ve iç içe geçmiş faktörler

Çoklu karşılaştırma yöntemleri (Tukey-HSD, Dunnett, Hsu-MCB, Games-Howell)

Etkileşim analizi (etkileşim etkilerinin analizi)

Varyans analizleri için seçicilik ve güç analizi


Deney Tasarımına Giriş (DoE) (yaklaşık 1 gün)

Tam ve kısmi faktöriyel deneysel tasarımlar


Proje çalışması (yaklaşık 3 gün)

Öğrenilen içeriği pekiştirmek için

Proje sonuçlarının sunumu

Makine Öğrenimi

Makine Öğrenimine Giriş (yaklaşık 5 gün)

Neden makine öğrenimi?

Uygulama örnekleri

Denetimli öğrenme, denetimsiz öğrenme, kısmi denetimli öğrenme, pekiştirmeli öğrenme

Veri seti örnekleri

Verileri tanıma

Eğitim, doğrulama ve test verileri

Veri görüntüleme

Tahminlerde bulunmak


Gözetimli öğrenme (yaklaşık 5 gün)

Sınıflandırma ve regresyon

Genelleme, aşırı uyum ve yetersiz uyum

Veri setinin boyutu

Denetimli öğrenme için algoritmalar

Doğrusal modeller

Bayes sınıflandırıcıları

Karar ağaçları

Rastgele Orman

Gradyan Güçlendirme

k-en yakın komşular

Destek Vektör Makineleri

Koşullu Rastgele Alan

Sinir Ağları ve Derin Öğrenme

Olasılıklar


Denetimsiz öğrenme (yaklaşık 5 gün)

Denetimsiz öğrenme türleri

Ön işleme ve ölçeklendirme

Veri dönüşümleri

Eğitim ve test verilerinin ölçeklendirilmesi

Boyut küçültme

Özellik mühendisliği

Manifold öğrenme

Temel bileşen ayrıştırması (PCA)

Negatif olmayan matris faktörizasyonu (NMF)

t-SNE ile Manifold öğrenme

Küme analizi

k-Means kümeleme

Aglomeratif kümeleme

Hiyerarşik küme analizi

DBSCAN

Küme algoritmaları


Değerlendirme ve iyileştirme (yaklaşık 2 gün)

Model seçimi ve model değerlendirmesi

Bir tahmin edicinin hiperparametrelerinin ayarlanması

Çapraz Doğrulama

Izgara arama

Değerlendirme metrikleri

Sınıflandırma


Proje çalışması (yaklaşık 3 gün)

Öğrenilen içeriği pekiştirmek için

Proje sonuçlarının sunumu



Değişiklikler mümkündür. Kurs içeriği düzenli olarak güncellenmektedir.

Python programlama dili gereklidir, veri analitiği alanında daha önce bilgi sahibi olunması tavsiye edilir.

Bu kurstan sonra, istatistiğin temellerini anlayacak, verileri işleyebilecek ve değerlendirebilecek ve istatistiksel veri analizlerini ve sonuçlarını grafikler kullanarak sunabilecek, açıklayabilecek ve yorumlayabileceksiniz.

Ayrıca makine öğrenimi hakkında da bilgi sahibisiniz. Makine öğrenimini kullanmanın en önemli nedenlerini, uygulama alanlarını ve makine öğreniminin çeşitli kategorilerini ve kavramlarını biliyorsunuz. Bilginizi değerlendirme ve iyileştirme becerileriyle tamamlayacaksınız.

Bilgisayar bilimleri, matematik, elektrik mühendisliği ve (işletme) mühendisliği diplomasına sahip kişiler

Makine öğrenimi çok sayıda uygulama alanında kullanılmaktadır: internet için uygun spam filtrelerinin bağımsız olarak geliştirilmesi, tedarik zinciri yönetiminde stok seviyelerinin kesin tahminlerinin oluşturulması veya pazarlamada bireysel müşteriler veya müşteri segmentleri için satın alma tahminlerinin geliştirilmesi. Makine öğrenimi alanında kalifiye olan çalışanlar tüm sektörlerde görevlendirilebilir ve bu nedenle işgücü piyasasında yüksek talep görmektedir.

Anlamlı sertifikanız, edindiğiniz nitelikler hakkında ayrıntılı bir fikir verir ve kariyer beklentilerinizi geliştirir.

Didaktik kavram

Eğitmenleriniz hem profesyonel hem de didaktik açıdan son derece kalifiyedir ve size ilk günden son güne kadar ders verecektir (kendi kendine çalışma sistemi yoktur).

Etkili küçük gruplar halinde öğreneceksiniz. Kurslar genellikle 6 ila 25 katılımcıdan oluşmaktadır. Genel dersler, tüm kurs modüllerinde çok sayıda pratik alıştırma ile desteklenmektedir. Uygulama aşaması kursun önemli bir parçasıdır, çünkü bu süre zarfında öğrendiklerinizi işler ve uygulamada güven ve rutin kazanırsınız. Kursun son bölümü bir proje, bir vaka çalışması veya bir final sınavını içerir.

 

Sanal sınıf alfaview®

BildungszentrumDersler, modern alfaview® video teknolojisi kullanılarak kendi evinizin rahatlığında ya da 'deki tesislerimizde gerçekleştirilir. Tüm kursiyerler alfaview® aracılığıyla birbirlerini yüz yüze görebilir, birbirleriyle dudak senkronize ses kalitesinde iletişim kurabilir ve ortak projeler üzerinde çalışabilir. Elbette, bağlı eğitmenlerinizi de istediğiniz zaman canlı olarak görebilir ve onlarla konuşabilirsiniz ve kursun tüm süresi boyunca eğitmenleriniz tarafından gerçek zamanlı olarak eğitileceksiniz. Dersler e-öğrenme değil, video teknolojisi aracılığıyla gerçek canlı yüz yüze öğretimdir.

 

alfatraining Agentur für Arbeit Eğitim kursları, AZAV onay yönetmeliğine uygun olarak sübvanse edilmekte ve sertifikalandırılmaktadır. Bildungsgutschein Aktivierungs- und VermittlungsgutscheinKurs başvurusunda bulunduğunuzda, kurs masraflarının tamamı genellikle finansman kuruluşunuz tarafından karşılanır.
Europäischen Sozialfonds Deutsche Rentenversicherung (ESF), (DRV) veya bölgesel finansman programları aracılığıyla da finansman mümkündür. Berufsförderungsdienst Düzenli bir asker olarak, (BFD) aracılığıyla daha fazla eğitim kursuna katılmak mümkündür. Agentur für Arbeit (Qualifizierungschancengesetz) Şirketler de çalışanlarını (BFD) tarafından sağlanan bir finansman programı aracılığıyla kalifiye hale getirebilirler.

Size ücretsiz tavsiyede bulunmaktan memnuniyet duyarız. 0800 3456-500 Pzt - Cuma günleri sabah 8'den akşam 5'e kadar
tüm Alman şebekelerinden ücretsiz.
Bize ulaşın
Size ücretsiz tavsiyede bulunmaktan memnuniyet duyarız. 0800 3456-500 Pzt - Cuma günleri sabah 8'den akşam 5'e kadar tüm Alman şebekelerinden ücretsiz.